Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Cell Signal ; 103: 110559, 2023 03.
Artículo en Inglés | MEDLINE | ID: covidwho-2158569

RESUMEN

The COVID-19 pandemic has triggered intensive research and development of drugs and vaccines against SARS-CoV-2 during the last two years. The major success was especially observed with development of vaccines based on viral vectors, nucleic acids and whole viral particles, which have received emergent authorization leading to global mass vaccinations. Although the vaccine programs have made a big impact on COVID-19 spread and severity, emerging novel variants have raised serious concerns about vaccine efficacy. Due to the urgent demand, drug development had originally to rely on repurposing of antiviral drugs developed against other infectious diseases. For both drug and vaccine development the focus has been mainly on SARS-CoV-2 surface proteins and host cell receptors involved in viral attachment and entry. In this review, we expand the spectrum of SARS-CoV-2 targets by investigating the COVID-19 signalome. In addition to the SARS-CoV-2 Spike protein, the envelope, membrane, and nucleoprotein targets have been subjected to research. Moreover, viral proteases have presented the possibility to develop different strategies for the inhibition of SARS-CoV-2 replication and spread. Several signaling pathways involving the renin-angiotensin system, angiotensin-converting enzymes, immune pathways, hypoxia, and calcium signaling have provided attractive alternative targets for more efficient drug development.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Vacunas contra la COVID-19/metabolismo , Pandemias/prevención & control , Receptores Virales/metabolismo , Antivirales/farmacología , Antivirales/uso terapéutico
2.
Cell Signal ; 101: 110495, 2023 01.
Artículo en Inglés | MEDLINE | ID: covidwho-2068757

RESUMEN

The COVID-19 pandemic has been the focus of research the past two years. The major breakthrough was made by discovering pathways related to SARS-CoV-2 infection through cellular interaction by angiotensin-converting enzyme (ACE2) and cytokine storm. The presence of ACE2 in lungs, intestines, cardiovascular tissues, brain, kidneys, liver, and eyes shows that SARS-CoV-2 may have targeted these organs to further activate intracellular signalling pathways that lead to cytokine release syndrome. It has also been reported that SARS-CoV-2 can hijack coatomer protein-I (COPI) for S protein retrograde trafficking to the endoplasmic reticulum-Golgi intermediate compartment (ERGIC), which, in turn, acts as the assembly site for viral progeny. In infected cells, the newly synthesized S protein in endoplasmic reticulum (ER) is transported first to the Golgi body, and then from the Golgi body to the ERGIC compartment resulting in the formation of specific a motif at the C-terminal end. This review summarizes major events of SARS-CoV-2 infection route, immune response following host-cell infection as an important factor for disease outcome, as well as comorbidity issues of various tissues and organs arising due to COVID-19. Investigations on alterations of host-cell machinery and viral interactions with multiple intracellular signaling pathways could represent a major factor in more effective disease management.


Asunto(s)
COVID-19 , Humanos , Pandemias , SARS-CoV-2 , Enzima Convertidora de Angiotensina 2 , Síndrome de Liberación de Citoquinas , Comorbilidad
3.
Arh Hig Rada Toksikol ; 73(2): 119-125, 2022 Jul 07.
Artículo en Inglés | MEDLINE | ID: covidwho-1923985

RESUMEN

Considering that some researchers point to a possible influence of air pollution on COVID-19 transmission, severity, and death rate, the aim of our in silico study was to determine the relationship between the key air pollutants [sulphur dioxide (SO), carbon monoxide (CO), 2particulate matter (PMx), nitrogen dioxide (NO2), and ozone (O3)] and COVID-19 complications using the publicly available toxicogenomic analytical and prediction tools: (i) Comparative Toxicogenomic Database (CTD) to identify genes common to air pollutants and COVID-19 complications; (ii) GeneMANIA to construct a network of these common and related genes; (iii) ToppGene Suite to extract the most important biological processes and molecular pathways; and (iv) DisGeNET to search for the top gene-disease pairs. SO2, CO, PMx, NO2, and O3 interacted with 6, 6, 18, 9, and 12 COVID-19-related genes, respectively. Four of these are common for all pollutants (IL10, IL6, IL1B, and TNF) and participate in most (77.64 %) physical interactions. Further analysis pointed to cytokine binding and cytokine-mediated signalling pathway as the most important molecular function and biological process, respectively. Other molecular functions and biological processes are mostly related to cytokine activity and inflammation, which might be connected to the cytokine storm and resulting COVID-19 complications. The final step singled out the link between the CEBPA gene and acute myelocytic leukaemia and between TNFRSF1A and TNF receptor-associated periodic fever syndrome. This indicates possible complications in COVID-19 patients suffering from these diseases, especially those living in urban areas with poor air quality.


Asunto(s)
Contaminantes Atmosféricos , COVID-19 , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/toxicidad , Citocinas , Análisis de Datos , Humanos , Dióxido de Nitrógeno/toxicidad , Toxicogenética
5.
Mol Inform ; 40(5): e2000187, 2021 05.
Artículo en Inglés | MEDLINE | ID: covidwho-1159390

RESUMEN

Considering the urgent need for novel therapeutics in ongoing COVID-19 pandemic, drug repurposing approach might offer rapid solutions comparing to de novo drug design. In this study, we designed an integrative in silico drug repurposing approach for rapid selection of potential candidates against SARS-CoV-2 Main Protease (Mpro ). To screen FDA-approved drugs, we implemented structure-based molecular modelling techniques, physiologically-based pharmacokinetic (PBPK) modelling of drugs disposition and data mining analysis of drug-gene-COVID-19 association. Through presented approach, we selected the most promising FDA approved drugs for further COVID-19 drug development campaigns and analysed them in context of available experimental data. To the best of our knowledge, this is unique in silico study which integrates structure-based molecular modeling of Mpro inhibitors with predictions of their tissue disposition, drug-gene-COVID-19 associations and prediction of pleiotropic effects of selected candidates.


Asunto(s)
Antivirales/farmacología , Tratamiento Farmacológico de COVID-19 , Reposicionamiento de Medicamentos/métodos , Inhibidores de Proteasas/farmacología , SARS-CoV-2/enzimología , Proteínas de la Matriz Viral/antagonistas & inhibidores , Antivirales/química , Simulación por Computador , Diseño de Fármacos , Humanos , Simulación del Acoplamiento Molecular , Inhibidores de Proteasas/química , SARS-CoV-2/efectos de los fármacos , Proteínas de la Matriz Viral/metabolismo
6.
Toxicol Appl Pharmacol ; 406: 115237, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: covidwho-752826

RESUMEN

Improvement of COVID-19 clinical condition was seen in studies where combination of antiretroviral drugs, lopinavir and ritonavir, as well as immunomodulant antimalaric, chloroquine/hydroxychloroquine together with the macrolide-type antibiotic, azithromycin, was used for patient's treatment. Although these drugs are "old", their pharmacological and toxicological profile in SARS-CoV-2 - infected patients are still unknown. Thus, by using in silico toxicogenomic data-mining approach, we aimed to assess both risks and benefits of the COVID-19 treatment with the most promising candidate drugs combinations: lopinavir/ritonavir and chloroquine/hydroxychloroquine + azithromycin. The Comparative Toxicogenomics Database (CTD; http://CTD.mdibl.org), Cytoscape software (https://cytoscape.org) and ToppGene Suite portal (https://toppgene.cchmc.org) served as a foundation in our research. Our results have demonstrated that lopinavir/ritonavir increased the expression of the genes involved in immune response and lipid metabolism (IL6, ICAM1, CCL2, TNF, APOA1, etc.). Chloroquine/hydroxychloroquine + azithromycin interacted with 6 genes (CCL2, CTSB, CXCL8, IL1B, IL6 and TNF), whereas chloroquine and azithromycin affected two additional genes (BCL2L1 and CYP3A4), which might be a reason behind a greater number of consequential diseases. In contrast to lopinavir/ritonavir, chloroquine/hydroxychloroquine + azithromycin downregulated the expression of TNF and IL6. As expected, inflammation, cardiotoxicity, and dyslipidaemias were revealed as the main risks of lopinavir/ritonavir treatment, while chloroquine/hydroxychloroquine + azithromycin therapy was additionally linked to gastrointestinal and skin diseases. According to our results, these drug combinations should be administrated with caution to patients suffering from cardiovascular problems, autoimmune diseases, or acquired and hereditary lipid disorders.


Asunto(s)
Betacoronavirus , Simulación por Computador , Minería de Datos/métodos , Toxicogenética/métodos , Antivirales/administración & dosificación , Antivirales/efectos adversos , Azitromicina/administración & dosificación , Azitromicina/efectos adversos , COVID-19 , Cloroquina/administración & dosificación , Cloroquina/efectos adversos , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/genética , Bases de Datos Genéticas , Quimioterapia Combinada , Redes Reguladoras de Genes/efectos de los fármacos , Redes Reguladoras de Genes/genética , Humanos , Hidroxicloroquina/administración & dosificación , Hidroxicloroquina/efectos adversos , Lopinavir/administración & dosificación , Lopinavir/efectos adversos , Pandemias , Neumonía Viral/tratamiento farmacológico , Neumonía Viral/genética , Ritonavir/administración & dosificación , Ritonavir/efectos adversos , SARS-CoV-2 , Tratamiento Farmacológico de COVID-19
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA